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Abstract - With the rapid growth of student enrollment and the expansion of academic offerings in universities and colleges 

worldwide, the task of scheduling classes within existing timetables and facilities has become increasingly complex. Today, class 

scheduling requires consideration of multiple factors, including room availability, capacity, instructors’ preferences, and more. 

This problem is considered to be NP-complete and has received some research during the past few years. Several formulations 

and algorithms have been proposed to solve scheduling problems, most of which are based on local search techniques. In this 

paper, 2 different types of algorithms have been compared to solve the class scheduling problem: the random restart Hill-

Climbing algorithm and the A-Star algorithm. 

Keywords - A Star, Class Scheduling, Hill-Climbing, NP-complete, Searching Algorithms.

1. Introduction 
One of the biggest obstacles in the field of educational 

and operational research is the class scheduling problem. 

Universities have to deal with an ever-expanding course 

catalogue, which makes it necessary to assign a wide variety 

of classes to classrooms that effectively have different 

capacities. The goal of this optimization problem is to create 

a course schedule that maximizes the effective and efficient 

use of currently available facilities while also adhering to a 

comprehensive set of university constraints. A number of 

interrelated factors contribute to the Class Scheduling 

Problem's complexity, making it a complex challenge. First, 

there is significant variety in the number of students enrolled 

in each course. Comparably, there is a great deal of variance 

in classroom capacities. The existence of course-specific 

classroom constraints further compounds these factors. 

Furthermore, professors frequently share their preferences for 

the day of the week, time slot, and even break schedule for the 

courses they are assigned to teach. These elements, along with 

the requirement to adhere to numerous regulations specific to 

the university, make the process of assigning courses to 

classrooms an extremely complex undertaking. It is not 

enough to just make sure a classroom can hold all of the 

students enrolled in the course. A method like this would 

result in less-than-ideal space use, which could impair 

learning and increase student discontent. Imagine the 

following scenario: there are two courses, each with six and 

nineteen students. Moreover, suppose there are two 

classrooms: one with twenty seats and another with fifty. 

Although it is technically possible to arrange either course in 

either space, it would be more strategic to place the larger 

course in the larger classroom. This example best illustrates 

the complexity of the class scheduling problem. In order to 

guarantee efficient operation and the best use of resources 

within universities, researchers are still investigating 

advanced approaches to deal with this complex issue. 

2. Problem Statement 
Receiving a set of courses, each with a specific number of 

students, a set of rooms with a specific capacity, and a list of 

instructors with their list of preferences, the goal is to assign 

each course to a room and a time slot, according to a list of 

constraints. There are 2 types of constraints that need to be 

satisfied: 

2.1. Hard Constraints 

 Below is the list of constraints that must be satisfied for 

the solution to be valid. If any of these constraints are not 

satisfied, the solution is invalid. 
• Within a designated timeslot and in a given room, only 

one subject may be taught by a single instructor. 

• During any given time slot, an instructor may teach only 

one subject, and this instruction must occur within a 

singular room. 

• An instructor may conduct classes in a maximum of 7 

time slots per week. 
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• Within a specified time slot, a room may accommodate a 

number of students equal to or less than its predetermined 

maximum capacity. 

• All students enrolled in a particular subject must have 

designated class hours allocated for that subject. 

• Instructors are restricted to teaching only the subjects in 

which they are specialized. 

• All rooms are designated for classes pertaining only to the 

subjects for which they have been assigned. 

2.2. Soft Constraints 

 Below is the list of constraints that are not mandatory, 

but they are taken into account when evaluating the quality of 

the solution. 

• An instructor may express preferences regarding specific 

days of the week for teaching or may wish to avoid 

teaching on certain days. 

• An instructor may have preferences regarding specific 

time slots during the day for teaching or may wish to 

avoid teaching during certain time slots. 

• An instructor may prefer not to have a break exceeding a 

certain number of hours between consecutive classes. 

3. Methods of Approach 
3.1. Random Restart Hill Climbing  

This is a local search algorithm commonly applied in 

optimization problems. It begins with an initial solution and 

iteratively explores neighboring solutions, selecting the one 

that improves the objective function the most. This process 

continues until a local optimum is reached, where no better 

solution can be found in the immediate neighborhood.  

When the algorithm reaches a local optimum, it restarts 

the search from a random initial solution. The algorithm 

terminates when a specified number of iterations have been 

completed or when a solution that satisfies all constraints is 

found. 

3.2. A Star  

This is an informed search algorithm widely used for 

pathfinding and graph traversal tasks. It intelligently combines 

both actual path costs and heuristic estimates to guide the 

search towards the goal efficiently. A* maintains a priority 

queue of nodes to be explored and selects the most promising 

node based on a combination of the cost incurred so far and 

the estimated cost to reach the goal. This allows A* to 

efficiently find the optimal path while intelligently pruning the 

search space, making it highly effective for solving a wide 

range of optimization problems. 

4. Algorithm Design 
4.1. State Representation 

The state representation for the Class Scheduling Problem 

consists of a schedule that assigns each course to a room and 

a time slot. The state is represented as a class that contains the 

following fields: 

• file_name: The name of the file from which the data was 

read. 

• yaml_dict: A dictionary containing the data read from the 

file. 

• size: A tuplet (days, time_slots) representing the size of 

the schedule. 

• schedule: A dictionary that has the following structure: 

{(day: str) : {(time_slot: (int, int)) : {(classroom : str) : 

((instructor : str), (subject : str))}}}. 

• students_per_subject: A dictionary that contains the 

number of students for each subject that needs to be 

scheduled. 

• count_teacher_slots: A dictionary that contains the 

number of scheduled slots for each instructor. 

• trade_off: A number that represents the trade-off between 

the number of constraints satisfied and the chosen 

classroom at each step (used in A Star). 

4.1.1. Initial State 

The initial state is generated as an empty schedule, which 

is initialized with the parameters derived from the input file, 

including the number of days, time slots, and classrooms. 

Additionally, the number of students per subject is obtained 

from the input file, while the count of scheduled slots for each 

instructor is set to zero. This initial state serves as the starting 

point for the search algorithms, enabling them to iteratively 

allocate courses to rooms and time slots until a valid schedule 

is achieved. An alternative method for generating the initial 

state involves randomly assigning course instructors to rooms 

and time slots in a manner that adheres to the hard constraints. 

A comparative analysis of these two approaches will be 

conducted in the Initial State Selection section. 

4.1.2. Generating Neighbors 

The neighbors of a state are generated by considering all 

possible combinations of assigning a course to a room, a time 

slot and an instructor while ensuring adherence to the hard 

constraints. In the initial phase, all potential neighbors that 

adhere to both the hard and soft constraints are generated. 

Subsequently, in the event that no neighbors satisfying all soft 

constraints are found, a secondary phase ensues where only 

neighbors satisfying the hard constraints are generated. This 

strategy reduces the total number of neighbors generated, 

allowing the algorithm to prioritize those that satisfy all 

constraints. Consequently, the algorithm minimizes time 

wastage by avoiding the generation of neighbors that would 

not be utilized, resulting in a reduced number of states 

generated. 

4.1.3. Initial State Selection 

As previously mentioned, the initial state can be 

generated in two methodologies: either as an empty schedule 

or through the random assignment of courses, instructors, and 

rooms to time slots. The former method exhibits a greater 

degree of determinism, initializing the schedule with vacant 

slots, whereas the latter introduces stochasticity into the initial 
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state generation process. Upon experimentation with both 

approaches, it became evident that the random initialization 

method could often yield solutions that fail to adhere to all 

specified soft constraints. This underscores the importance of 

carefully considering all potential subsequent states that may 

arise from the current state when designing the random 

initialization method. For instance, in instances where an 

instructor´s preferences are violated within a particular time 

slot, the algorithm should endeavor to substitute the instructor 

with another whose preferences remain unviolated for that 

time slot. Moreover, the algorithm should endeavor to 

substitute the time slot with another or substitute the room 

with another that has the same capacity in total.  

This approach was found more difficult to implement. 

When trying to implement the first two substitutes, the 

algorithm was not able to find a solution that satisfies all the 

soft constraints, and it took quite a lot of time to find a partial 

solution due to a large number of constraints that should be 

checked while creating the neighbors. On the other hand, this 

approach will always find a partial solution that satisfies all 

the hard constraints. Thus, this one is recommended in cases 

when the soft constraints are not that important. The method 

that was used in the end was the empty schedule initialization. 

It is acknowledged that without the random initialization 

component, the Hill-Climbing algorithm may struggle to 

assign all students to a room, thereby violating a hard 

constraint. However, with the inclusion of the random restart, 

the algorithm will always find a solution that satisfies all the 

hard constraints, the soft ones being satisfied in most of the 

cases. This approach is recommended in cases when the soft 

constraints are more important than in the previous case, and 

it is easier to generate the neighbors. 

4.2. Random Restart Hill Climbing 

As previously mentioned, the Random Restart Hill 

Climbing algorithm is the most suitable for this approach. The 

algorithm is initialized with an empty schedule and generates 

neighbors that adhere to the hard constraints. The algorithm 

iteratively explores the neighborhood of the current state, 

randomly selecting one of the neighbors that satisfies the most 

constraints. This process continues until a local optimum is 

reached, at which point the algorithm restarts the search. The 

algorithm terminates when a solution that satisfies all 

constraints is found or when a specified number of 

iterations/restarts have been completed. A pseudocode of the 

algorithm is presented in Algorithm 1. 

Algorithm 1: Random Restart Hill Climbing Algorithm 

1: procedure    HILL_CLIMBING(max_restarts) 

 return [is_final, total_iters, total_states, best_state] 

2: total_iters = 0 

3: total_states = 0 

4: best_state = None 

5: for index in range(max_restarts) do 

6: state = InitialState() 

7: is_final, iters, states, state = 

STOCHASTIC_HILL_CLIMBING(state, total_iters) 

8: total_iters+ = iters 

9: total_states+ = states 

10: if is_final then 

11: return [is_final, total_iters, total_states, state] 

12: if state does not have hard constraints then 

13: if best_state == None or state has less soft constraints 

unsatisfied than best_state then 

14: best_state = state 

15: return [is_final, total_iters, total_states, best_state] 

 

 

Algorithm 1: Stochastic Hill Climbing Algorithm 

1: procedure STOCHASTIC_HILL_CLIMBING(state, 

max_iters) return [is_final, total_iters, total_states, 

best_state] 

2: total iters = 0 

3: total states = 0 

4: while total_iters < max_iters do 

5: total iters+ = 1 

6: if state is final then return [True, total_iters, 

total_states, state] 

7: neighbors = state.generate_neighbors() 

8: total_states+ = len(neighbors) 

9: if neighbors == None then return [False, total_iters, 

total_states, state] 

10: state = random.choice(from neighbors one of the 

neighbors with minimum number of constraints unsatisfied) 

11: return [False, total_iters, total_states, state] 

 

4.3. A Star 

For the A Star algorithm, the state representation is the 

same as for the Random Restart Hill Climbing algorithm. The 

algorithm is initialized with an empty schedule and generates 

neighbors that adhere to the hard constraints. The algorithm 

iteratively explores the neighborhood of the current state. The 

frontier represents a heap that contains the states that need to 

be explored. The discovered is a dictionary that contains as 

keys the number of students that need to be scheduled for each 

subject and as values the cost of the state that brought about 

this configuration. The function used in the A Star algorithm 

is: 

f(state) = g(state) + h(state)    (1) 

  where 

h(state) = total number of students that are not assigned

       (2) 

g(state) = number of constraints unsatisfied ∗ weight + trade 

off       (3) 

trade off = number of classrooms(subject)  (4) 

                     total number of classrooms 
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The heuristic function is admissible because the return 

value is always less than or equal to the actual cost of the state 

to reach a final one and is equal to 0 in the final states. On the 

other hand, the function h is not consistent, because a state 

from discovered can be added to the frontier with a smaller 

cost. The cost function is calculated as the number of 

constraints unsatisfied multiplied by a weight and the trade-

off. In cases where the number of constraints unsatisfied is 

equal, multiplying it by a weight will prioritize the states that 

have the trade-off smaller. Moreover, when the number of 

constraints unsatisfied is different, the prioritization will be 

made based on the number of constraints unsatisfied, not on 

the trade-off. The trade-off is calculated as the number of 

classrooms that are assigned to a subject divided by the total 

number of classrooms. Adding a subject to a classroom that 

has fewer subjects assigned to it has been prioritized. For 

instance, if there was 2 subjects: A and B, 2 classrooms: 1 and 

2, and classroom 1 is assigned to subject A and classroom 2 is 

assigned to both subjects while trying to assign a subject to 

classroom 2, subject B (trade off = 0.5) is chosen instead of 

subject A (trade off = 1). The pseudocode of the algorithm is 

presented in Algorithm 2. 

Algorithm 2: A Star Algorithm 

1: procedure ASTAR return [is_final, total_iters, total_ 

states, best_state] 

2: frontier = [] 

3: discovered = {} 

4: state = InitialState() 

5: frontier.append((f(state), state)) 

6: discovered[state] = 0 

7: total_iters = 0 

8: total_states = 1 

9: while frontier do 

10: current state = frontier.pop(1) 

11: total_iters+ = 1 

12: if current_state == 0 then return 

[True, total_iters, total_states, current_state] 

13: neighbors = current_state.generate_neighbors() 

14: total_states+ = len(neighbors) 

15: for neighbor in neighbors do 

16: new cost = g(neighbor) + h(neighbor) 

17: students_per_subject = 

neighbor.students_per_subject 

18: if students_per_subject not in discovered or new_cost 

< discovered[students_per_subject] then 

19: discovered[neighbor] = new_cost 

20: frontier.append((new_cost, neighbor)) 

21: return [False, total_iters, total_states, 

current_state] 

 

4.4. Complexities 

The complexity of the Random Restart Hill Climbing 

algorithm is O(n), where n is the total number of iterations. 

The complexity of the A Star algorithm is O(bd), where b is 

the branching factor and d is the depth of the solution. The 

complexity of the generate neighbors function is O(d ∗ t ∗ c ∗ 

i ∗ s), where d is the number of days, t is the number of time 

slots, c is the number of classrooms, i is the number of 

instructors, and s is the number of subjects. Because the 

number of days does not exceed 7 (the worst case) and the 

number of time slots does not exceed 12, the complexity 

becomes O(c ∗ i ∗ s). 

5. Evaluation 
Both algorithms are evaluated based on the quality of the 

solutions they provide, the time required to find these 

solutions and the total number of states explored during the 

search. The quality of the solutions is evaluated based on the 

number of constraints satisfied. The time required to find the 

solutions is measured in milliseconds, and the total number of 

states explored is counted during the search process. 

5.1. Tests Description 

Small timetable exactly: Contains 3 courses, 2 rooms, and 

13 instructors. The number of students for each course are 300, 

330, and 330. The capacity of the rooms is 20 and 30. The 

instructors have few preferences. Relaxed average schedule: 

Contains 4 courses, 4 rooms, and 18 instructors. The number 

of students for each course is 660, 660, 665 and 685. The 

capacity of the rooms is 25, 25, 35 and 70. The instructors 

have few preferences. Relaxed high schedule: Contains 8 

courses, 6 rooms, and 37 instructors. The number of students 

for each course is 470, 475, 475, 495, 500, 530, 535 and 550. 

The capacity of the rooms is 25, 30, 30, 35, 85 and 85. The 

instructors have few preferences. Time limit violated: 

Contains 4 courses, 2 rooms, and 17 instructors. The number 

of students for each course is 720, 750, 780 and 810. The 

capacity of the rooms is 15 and 90. The instructors have a lot 

of preferences. Orar bonus exact: Contains 5 courses, 5 rooms, 

and 23 instructors. The number of students for each course is 

500, 510, 515, 520 and 545. The capacity of the rooms is 15, 

15, 15, 15 and 50. The instructors have a lot of preferences, 

including break constraints. 

5.2. Results 

For the Hill-Climbing algorithm, the number of restarts 

was established at 100, while the maximum number of 

iterations for all tests was capped at 1000. In the case of the 

A* algorithm, a weight of 100 was applied. Each test involved 

the execution of both algorithms. The ensuing tables depict the 

outcomes across various categories: the count of unsatisfied 

soft constraints, the time taken to attain a solution, the total 

number of states explored during the search, and the iterations 

needed to reach a solution. Additionally, for the Hill Climbing 

algorithm, the number of restarts executed until a solution was 

obtained is delineated. The outcomes for the Hill Climbing 

algorithm are categorized based on the number of restarts. 

Moreover, the individual results for each test are presented in 

the following Tables 1 and 2. 
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Fig. 5 Number of restarts until a solution was found for Hill 

Climbing 

 

5.3. Observations 

The Hill Climbing algorithm exhibits faster performance 

compared to the A* algorithm primarily due to its local search 

nature.  

The Hill Climbing algorithm is more efficient in terms of 

the number of iterations required to reach a solution. 

The A* algorithm, while slower, is more effective in 

terms of the number of unsatisfied constraints. The A* 

algorithm consistently yields solutions that satisfy all 

constraints, whereas the Hill Climbing algorithm occasionally 

encounters unsatisfied constraints. 

Recognizing the prolonged duration required to attain a 

solution for orar_bonus_exact using the Hill-Climbing 

algorithm, the number of restarts was reduced to 20. 

The A Star algorithm is more suitable for scenarios 

similar to orar_mic_exact, orar_mediu_relaxat, and 

orar_constrans_incalcat, where the number of neighbors 

generated is smaller. In contrast, the Hill Climbing algorithm 

is more appropriate for scenarios similar to orar_mare_relaxat 

and orar_bonus_exact, where the number of neighbors 

generated is larger. 

Table 1. Results obtained for the Hill Climbing algorithm 

No. set No. iterations No. states Time mm.ss.ms 
No. unsatisfied  

constraints 
No. restarts 

1 106 9989 0.4.317 0 3 

2 71 53875 0.34.053 0 1 

3 76 72621 0.77.753 0 1 

4 5889 1228027 10.40.491 6 100 

5 2221 1603927 22.47.289 5 20 

Table 2. Results obtained for the A Star algorithm 

No. set No. iterations No. states Time mm.ss.ms No. unsatisfied constraints 

1 146 17073 0.8.537 0 

2 158 183159 2.12.937 0 

3 2883 2171276 52.49.856 0 

4 91 12368 0.8.172 0 

5 2542 1385784 27.15.878 0 
  

6. Conclusion 
In summary, based on the context of the implementation 

of the Class Scheduling Problem, the Hill Climbing algorithm 

outperforms the A* algorithm in terms of efficiency. A* 

achieves slower solution discovery but with no unsatisfied 

constraints. Conversely, Hill Climbing is faster but may 

occasionally encounter unsatisfied constraints. The Hill 

Climbing algorithm is more suitable for scenarios where the 

soft constraints are less significant and the time required to 

find a solution is a critical factor. In contrast, the A* algorithm 

is more appropriate for scenarios where the soft constraints are 

more significant and the quality of the solution is paramount. 
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